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Abstract

The existing models of switch-toughening seldom consider the effect of non-uniform ferro-elastic domain switching
in the vicinity of a crack. To explore this issue, an evolution law for the volume fraction of the switched portion under
applied electromechanical loading is established from the minimum energy principle. Based on this law, a switching
model capable of dealing with the non-uniform distribution of switching strain is developed. The domain switching
zone is divided into a saturated inner core and an active surrounding annulus. Mono-domain solution of ferro-elastic
toughening is obtained under the model of small scale domain switching. Toughening for ferroelectrics with different
poling states is estimated via Reuss type approximation. Two sets of solutions are obtained according to spherical
and cylindrical inclusions. The interval of toughening defined by these two models covers the range of experimental
data. The same conclusion is reached for the size of the switching zone.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

While recent decades have seen progressive applications of ferroelectric materials in wide aspects, such as
sensors, actuators and smart structures, the intrinsic brittleness of ferroelectric materials leads to grave con-
cerns with respect to reliability issues. Among them, ferro-elastic/ferroelectric toughening is a major rem-
edy. The assumption of uniform domain switching is typically made within a switching zone in the
toughening calculation. This assumption traces its source back to what was made in the pioneering work
of transformation toughening for zirconia-containing ceramics. In transformation toughening, it is often
assumed that the transformation strain remains constant within the transformed zone and vanishes outside
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it. Thus a strong step-like discontinuity exists in the magnitude of strain across the transformation bound-
ary. This step-like jump is probably unrealistic, and a gradual change in the volume fraction of the trans-
formed material across the process zone is to be expected (Hannink et al., 2000).

Budiansky et al. (1983) first distinguished the fully and the partially transformed zone. They introduced
two types of transformation constitutive relations: super-critical and sub-critical. Experimental evidences
reveal a fact that the realistic volume fraction is not uniform within a transformation zone (Cox et al.,
1988; Marshall et al., 1990), and the volume fraction within the zone decreases continuously with increasing
distance from the crack tip. Evaluation of the shielding were made for actual transformation zone profile
based on size distribution of the transforming particles (Hsueh and Becher, 1988), as well as on the exper-
imental measurements of the zone size (Yu et al., 1992). In contrast to the richness of literatures about cal-
culation towards super-critical type transformation, available toughening results for sub-critical one are few
and far between. This is also the case for ferro-elastic toughening.

The concept of non-uniform domain switching was elucidated qualitatively by Kolleck et al. (2000)
for ferroelectric domain switching induced by electric field parallel to the crack front. The non-uniformity
in ferro-elastic domain switching was experimentally confirmed by Förderreuther et al. (2002) and
Hackemann and Pfeiffer (2003). The existence of a transition area of polarization switching was verified
by many experiments (e.g. Cao and Evans, 1993; Schäufele and Härdtl, 1996) for ferroelectrics. The idea
of dividing the ferro-elastically switched region into a saturated inner core and a transitional outer layer
was proposed by Reece and Guiu (2002). However, no analytical effort has been devoted to exploring
the toughening effect of non-uniform domain switching.

The present work deals with the fully and partially switchings by introducing a saturated switching core
that encloses the crack tip and is surrounded by a partially switched annulus. Different criteria are proposed
for the saturated and the transitional switching boundaries in Section 2. Two sets of solutions are obtained
for spherical and cylindrical inclusions anticipated in the evolution of non-uniform volume fraction.
Two-dimensional weight function is introduced to calculate the toughening induced by non-uniform
ferro-elastic domain switching in Section 3. In Section 4, toughening of mono-domain is calculated under
the framework of small scale domain switching. The toughening calculation is conducted for the asymptote
of R-curve for the steady-state crack growth. The mono-domain solution is used to construct toughening
for ferroelectric ceramics via Reuss type approximation and an orientation distribution function. Evalua-
tion is performed for ferroelectrics with un-poled and two poled configurations. Two sets of solutions are
obtained corresponding to spherical and cylindrical inclusions. The steady state toughness and the size of
the switching zone measured in experiment fall within the interval defined by two sets of solutions.
2. Evolution law of volume fraction for non-uniform ferro-elastic domain switching

Attention here is restricted to in-plane deformation and loading. Cartesian coordinates are introduced,
such that x1 is along the crack direction and x2 is normal to it. We start from the simple case of mono-do-
main ferroelectrics. If the mono-domain forms an angle / with respect to x1, after the complete 90� domain
switching, the corresponding switching strain is (Yang and Zhu, 1998)
Deij ¼ esp~eij ¼ esp

� cos 2/ � sin 2/

� sin 2/ cos 2/

� �
; esp �

c� a
a

; ð1Þ
where esp denotes the spontaneous polarization strain, ~eij the orientation dependent angular distribution,
and c, a the lattice parameters of tetragonal ferroelectric phase. Mono-domain is easily obtained in single
crystal samples and the domain could switch entirely with the action of applied field above the coercive
field. But the case is different for grains in ferroelectric ceramics. Two questions have to be answered: when
the switching is activated and how many of the domains will switch under the applied load. Yang et al.
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(2001b) and Yang (2002) derived an expression for the system energy change, as described in detail in (A.1)
of Appendix A, for a switched spherical grain with banded structure embedded in an otherwise infinite fer-
roelectric medium subjected to applied electromechanical loading.

Generalizing (A.1) into arbitrary in-plane loading, one may convert the mechanical work for domain
switching, elucidated in Eq. (1), as
rijDeij ¼ 2esprDS; rDS ¼
r22 � r11

2
cos 2/� r12 sin 2/. ð2Þ
The quantity, rDS, not only measures the external work during 90� domain switching but also acts as a
stress combination to control the degree of domain switching. As schematically depicted in Fig. 1, the stress
combination rDS corresponds to the shear stress component in a new coordinate system x01x02 rotating anti-
clockwise by an angle of p/4 + /. In Fig. 1, P0 refers to the polarization vector with initial orientation /
and P90 the polarization vector after 90� domain switching. It is noteworthy that only the anti-clockwise
90� domain switching is shown in Fig. 1. For the clockwise case, the same switching strain tensor like
Eq. (1) holds, thus rendering the distinction of two cases unnecessary in the subsequent calculations of fer-
ro-elastic domain switching. The subscript ‘‘DS’’ stands for domain switching. Since rDS controls the do-
main switching, other stress elements in Fig. 1 are omitted for clarity.

As the first step, by neglecting the insignificant second item in (A.1) and combining the threshold quan-
tity in domain switching, one obtains following explicit expression
V 90 ¼
15ð1� m2Þ
2ð7� 5mÞE

1

e2
sp

½rijDeijð/Þ � W th� ¼
15ð1� m2Þ
ð7� 5mÞE

1

esp

½rDS � rth� ð3Þ
for V90, the volume fraction of the portion that experiences 90� domain switching, for the case of purely
mechanical loading. In (3), E is the Young�s modulus, m the Poisson�s ratio, and Wth the threshold energy.
One may further defines a threshold stress as rth = Wth/2esp, which is equivalent to the concept of threshold
energy. Eq. (3) is derived for a fully constrained spherical grain (or inclusion). For a cylindrical grain (or
inclusion) unconstrained along x3 direction, a similar expression is arrived by changing the factor
15(1 � m2)/(7 � 5m) above to 16(1 � m2)/3. Eq. (3) acts as the governing equation for the evolution of volume
fraction under mechanical loading. The switching criterion implied in (3) is
Fig. 1. Switch-controlling characteristic stress rDS and related domain switching for a special case of / = p/4.
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rDS P rth. ð4Þ

On the other hand, load-dependent volume fraction is solved through minimizing (A.1) under prescribed

load. We illustrate the usage of this criterion by considering a special loading of unidirectional compression.
The minimum energy is sought through the optimization method for the applied compressive stress. As a
result, one obtains a dotted curve (shown in Fig. 2) between the volume fraction, V90, and the stress com-
bination rDS, which is a half of the compressive stress in magnitude. For the ease of derivation, an explicit
formula like (3) is preferred and it should correlate the exact solution. Combining the linear relation in (3)
and the incubation regime of domain switching, one may propose the following piecewise function
V 90 ¼
0 rDS < rth;

V 0
90 þ ð1� V 0

90Þ
rDS�rth

rf�rth
rth 6 rDS < rf ;

1 rDS P rf .

8><>: ð5Þ
This approximation is represented by the solid line in Fig. 2 where V 0
90 and rth are also marked. In Eq. (5)

and/or Fig. 2, V 0
90 is the uniform component of V90 and remains constant within the switching zone,

ð1� V 0
90ÞðrDS � rthÞ=ðrf � rthÞ is the non-uniform part of V90 and governed by the characteristic stress

rDS, and rf means the stress level causing complete domain switching, i.e. V90 = 1. The presence of V 0
90,

though behaved as a step-like discontinuity along the switching boundary, is rather weak if compared with
the jump in the completely uniform switching model.

Eqs. (4) and (5) depict the evolution equation for ferro-elastic domain switching. Beside the correlation
with exact solution by Yang et al. (2001b), this piecewise linear relation also meets the experiment data of
zirconia transformation by Marshall et al. (1990). The mentioned experiment also supported the existence
of a saturated region. The saturation of ferro-elastic switching strain, emax

p , links to the saturation in ferro-
electrics in experiments (Cao and Evans, 1993; Schäufele and Härdtl, 1996), as shown schematically in Fig.
3. It is rather difficult to achieve complete domain switching for grains of ferroelectric ceramics even in a
saturation state. Accordingly, we assume that the maximum or saturated value of volume fraction is ac-
quired under the amplitude of r = rmax with the corresponding volume fraction being V 0

90 þ ð1� V 0
90Þ

ðrmax � rthÞ=ðrf � rthÞ. The value of rmax is determined by substituting the saturated volume fraction
V max

90 from experiment and rth into (5).
Comparison of the evolution law of V90 versus rDS. The dotted curve denotes prediction by the exact energy calculation of
nd the solid line represents linearized approximation of Eq. (5).



Fig. 3. Schematics of the stress–strain curves as measured from the experiment of compressive ferroelectric specimen.
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With the introduction of rmax, Eq. (5) implies the saturation phenomenon in the vicinity of a crack tip,
surrounded by a non-uniform partial switching zone, as caused by the stress singularity near a crack tip. A
dividing boundary between these two regions is termed the saturated switching boundary and determined
by rmax. Within the saturated region, the volume fraction exhibits the maximum value and remains con-
stant. The dividing boundary between the partially switched zone and non-switched zone is termed the
switching boundary and determined by rth. Within the transition region, the volume fraction decreases con-
tinuously from V max

90 along the saturated boundary to V 0
90 along the switching boundary with increasing dis-

tance from the crack tip. Incorporating the quantity of volume fraction into the formula of switching strain,
one may write the average strain tensor as
D�eij ¼ V 90Deij; ð6Þ

where the super-imposed bar in D�eij indicates the average.
3. Toughening from ferro-elastic domain switching

In this work, consideration is restricted to plane strain crack problems of mode I. In linear elastic frac-
ture mechanics, mode I crack-tip stress field reads
rij ¼
K1ffiffiffiffiffiffiffi
2pr
p ~rijðhÞ ð7Þ
and the angular distribution function ~rijðhÞ could be found in any fracture mechanics textbook. For do-
main switching activated by the crack-tip stress field, one may substitutes Eqs. (1) and (7) into Eq. (2)
to get the following expression for the switch-controlling stress
rDS ¼
K1

2
ffiffiffiffiffiffiffi
2pr
p sin h sin

3

2
h� 2/

� �
. ð8Þ
From the switching criterion, the contour lines of volume fraction inside a switching zone are given by
ffiffi
r
p
¼ K1

2
ffiffiffiffiffiffi
2p
p

rDS

sin h sin
3

2
h� 2/

� �
. ð9Þ
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One gets the switching boundary, Rtrans, by setting rDS = rth and the saturated switching boundary, Rsat, by
setting rDS = rmax. Details of the geometries of the domain switching zone are furnished in Appendix B.
From (B.3), the maximum half-height of the saturated switching boundary, hmax

saturated, and that of the switch-
ing boundary, hmax

switch, are obtained. Since un-perturbed elastic solution (7) is exploited, Eq. (9) gives the first
order approximation of the switching boundary. Smooth transition of switching strain from the crack-tip to
the switching boundary along a radial line merits the present non-uniform switching model more realistic
than a uniform model. We now in a position to consider the contribution of ferro-elastic domain switching
to the crack tip toughening. It is well known that the stress intensity factor at a crack tip, Ktip is shielded
from the remotely applied, K1, as
K tip ¼ K1 þ DK ð10Þ

by a toughness increment, DK, exerted by the constraining stress against domain switching. The criterion of
stress intensity factor is adopted for crack initiation. The cracking starts when the crack-tip stress intensity
factor Ktip reaches the intrinsic fracture toughness Kintrinsic.

To calculate the ferro-elastic toughening induced by the non-uniform switching area, one needs to ex-
ploit two-dimensional weight function. Rice (1985) derived the three-dimensional weight functions of ten-
sile mode for the half-plane crack. Bueckner (1987) obtained a complete set of three-dimensional weight
functions for half-plane and penny-shaped cracks. Based on their works, Gao (1989) gave a more concise
expression for the interaction between a crack-tip and a source of internal stress. The degenerated mode I
weight function for a half-plane crack in an otherwise infinite elastic body was given by Gao (1989) as
Hij ¼
1

16
ffiffiffiffiffiffi
2p
p
ð1� mÞ

1

r
3
2

eH ij; ð11Þ

eH 11eH 22eH 12

8><>:
9>=>; ¼

cosð3h=2Þ þ 3 cosð7h=2Þ
7 cosð3h=2Þ � 3 cosð7h=2Þ
�3 sinð3h=2Þ þ 3 sinð7h=2Þ

8><>:
9>=>;. ð12Þ
The formula of transformation toughening can be converted to the ferro-elastic case as
DK ¼ E
1þ m

Z
A

H ijD�eij dA ¼ 3Eesp

4
ffiffiffiffiffiffi
2p
p
ð1� m2Þ

Z
A

V 90 sin h sin
5h
2
� 2/

� �
1

r
3
2

dA; ð13Þ
where A represents the whole switching area. In (13), as commonly accepted in transformation case (e.g.
Budiansky et al., 1983; Lambropoulos, 1986), we assume the modulus of the switched region is roughly
the same as that of the un-switched matrix.

Combining Eqs. (5) and (13), one may divide the toughness increment into the contribution from the
uniform switching, DKuniform, and the contribution from the non-uniform switching DKnon-uniform:
DK ¼ DKuniform þ DKnon-uniform. ð14Þ

In the calculation of DKnon-uniform, one divides the whole switching zone into a saturated core and a tran-
sitional annulus. The non-uniform toughness increment consists of contributions from them as
DKnon-uniform ¼ DK transition þ DKsaturated. ð15Þ
4. Results and discussions

The knowledge presented in the last two sections paves the way for toughening calculations. We start our
discussions of the ferro-elastic toughening from the uniform and the non-uniform domain switching of a
stationary crack.
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4.1. Stationary crack

For the uniform switching, substituting V 0
90 into Eq. (13), one obtains the toughness increment
DKuniform ¼ 3Eesp

4
ffiffiffiffiffiffi
2p
p
ð1� m2Þ

Z h2

h1

Z Rtrans

0

V 0
90 sin h sin

5h
2
� 2/

� �
1ffiffi
r
p dr dh

¼ EV 0
90espKapp

32pð1� m2Þrth

½Hðh2Þ �Hðh1Þ�; ð16Þ
where
HðhÞ ¼ 1

4
½6 sin hþ 3 sinð2h� 4/Þ � 2 sin 3h� 3 sinð4h� 4/Þ þ sinð6h� 4/Þ�. ð17Þ
Similarly, the contribution from the saturated region of non-uniform switching is
DKsaturated ¼ 45ð1� V 0
90Þ

4
ffiffiffiffiffiffi
2p
p
ð7� 5mÞ

Z h2

h1

Z Rsat

0

ðrmax � rthÞ sin h sin
5h
2
� 2/

� �
1ffiffi
r
p dr dh

¼ 15ð1� V 0
90ÞK1

32pð7� 5mÞ ð1�
rth

rmax

Þ½Hðh2Þ �Hðh1Þ�; ð18Þ
and the contribution from the transitional region of non-uniform switching is
DK transition ¼ 45ð1� V 0
90Þ

4
ffiffiffiffiffiffi
2p
p
ð7� 5mÞ

Z h2

h1

Z Rtrans

Rsat

ðrDS � rthÞ sin h sin
5h
2
� 2/

� �
1ffiffi
r
p dr dh

¼ 15ð1� V 0
90ÞK1

32pð7� 5mÞ ln
rmax

rth

� 1þ rth

rmax

� �
½Hðh2Þ �Hðh1Þ�. ð19Þ
Combination of Eqs. (15), (18) and (19) leads to
DKnon-uniform ¼ 15ð1� V 0
90ÞK1

32pð7� 5mÞ ln
rmax

rth

½Hðh2Þ �Hðh1Þ� ð20Þ
for the toughness contribution from non-uniform switching.
Substitutions of Eqs. (16) and (20) into Eq. (14) gives rise to
DK ¼ g½Hðh2Þ �Hðh1Þ�K1 ð21Þ

for the toughening from the combinations of uniform and non-uniform switching, where a non-dimen-
sional constant g reads
g ¼ 1

32p
EV 0

90esp

ð1� m2Þrth

þ 15ð1� V 0
90Þ

7� 5m
ln

rmax

rth

� �
. ð22Þ
The toughness solution (21) for non-uniform switching reduces to the solution for uniform switching by
Yang and Zhu (1998) if one sets rth = rmax and V 0

90 ¼ V max
90 in (22).

For the toughening of the whole switching zone, one arrives at the following expression for a stationary
crack,
DK ¼ g½Hðhþf Þ �Hðhþi Þ þHðh�f Þ �Hðh�i Þ�K1. ð23Þ

The definitions and expressions for the initial and the final angles h�i and h�f can be found in Appendix B.
Substitution of h�i and h�f in (B.1) and (B.2) into (23) yields
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DK ¼ 0. ð24Þ

Namely the constraining stress from domain switching bears no effect on the apparent fracture toughness
for a stationary crack.

4.2. Growing crack

Next consider the switch-induced toughening for a growing crack. The switching zone is divided into a
frontal zone and a wake such that
DK ¼ DK front þ DKwake. ð25Þ
Both zones comprise the transitional and the saturated switching regions.
The frontal zone resembles the structure delineated for a stationary crack. Substituting the correspond-

ing angles in (B.1), (B.2) and (B.4) for the upper and the lower halves of the switched zone into (23), one has
DK front ¼ g½HðhþmaxÞ �Hðhþi Þ þHðh�f Þ �Hðh�maxÞ�K1 ¼ gF ð/ÞK1. ð26Þ
Eq. (26) quantifies the toughness increment from the frontal zone with
F ð/Þ ¼
5
2

sin p
5

cos 12
5
/þ 2 sin 2p

5
cos 4

5
/

� �
/ 2 0; 3

8
p

	 

;

5
2

2 sin p
5

cos 2p�4/
5
þ sin 2p

5
cos p�12/

5

� �
/ 2 3

8
p; p

2

� 

.

(
ð27Þ
The solution for / 2 [�p/2,0] can be obtained by reflective symmetry (Yang and Zhu, 1998).
The contribution from the wake zone is explored under the case of the steady-state crack growth. The

possibility of reverse switching is precluded in the wake for the sake of simplicity. In the wake, the contour
zone of constant volume fraction takes on the shape of an infinite horizontal strip with a determined height.
The equation of the strip and the corresponding area element are
r ¼ h�= sin h�; dA ¼ h�=sin2h�dhdh. ð28Þ

Again, the first calculation explores the contribution from the wake of uniform switching. Toughness

increment from the uniform upper wake is
DKuniform
wakeþ ¼

3Eesp

4
ffiffiffiffiffiffi
2p
p
ð1� m2Þ

Z hmax
transition

0

Z p�arctanhþ
Da

hþmax

V 0
90 sin hþ sin

5

2
hþ � 2/

� �
dhþffiffiffiffiffiffiffiffiffiffiffiffi
sin hþ
p dhþffiffiffiffiffiffi

hþ
p

¼ EV 0
90esp

2
ffiffiffiffiffiffi
2p
p
ð1� m2Þ

Z hmax
transition

0

f p� arctan
hþ

Da

� �
� f ðhþmaxÞ

� �
dhþffiffiffiffiffiffi

hþ
p ; ð29Þ
where
f ðh�Þ ¼ � sin
3

2
h� � 2/

� �
ð� sin h�Þ

3
2. ð30Þ
For the limiting case of a steady-state growing crack, one has
lim
hþ=Da!0þ

Z hmax
transition

0

f p� arctan
hþ

Da

� �
dhþffiffiffiffiffiffi

hþ
p ¼ lim

hþ=Da!0þ

Z hmax
transition

0

� cos 2/
hþ

Da

� �3
2 dhþffiffiffiffiffiffi

hþ
p ¼ 0. ð31Þ
Combination of Eqs. (29) and (31) yields
lim
hþ=Da!0þ

DKuniform
wakeþ ¼ �

EV 0
90espK1

32pð1� m2Þrth

WðhþmaxÞ; ð32Þ



4460 Y. Cui, W. Yang / International Journal of Solids and Structures 43 (2006) 4452–4464
where
Wðh�Þ ¼ 8 sin
3

2
h� � 2/

� �
sin4h�. ð33Þ
The same procedure is carried out for the calculation of the uniform lower wake and the total contribu-
tion from the uniform wake is
lim
h=Da!0

DKuniform
wake ¼ EV 0

90espK1

32pð1� m2Þrth

½Wðh�maxÞ �WðhþmaxÞ�. ð34Þ
Similarly, the toughness increment from the non-uniform wake is
lim
h=Da!0

DKnon-uniform
wake ¼ 15ð1� V 0

90ÞK1
32pð7� 5mÞ ln

rmax

rth

½Wðh�maxÞ �WðhþmaxÞ�. ð35Þ
Combination of Eqs. (34) and (35) leads to
lim
h=Da!0

DKwake ¼ g½Wðh�maxÞ �WðhþmaxÞ�K1. ð36Þ
Substitutions of Eqs. (26) and (36) into Eq. (25) yields
DK ¼ �gF ð/ÞK1. ð37Þ

for the steady-state toughness increment. As stated above, the reduction of Eq. (37) to the special case of
uniform switching holds. Substituting Eq. (37) into (10) and applying the stress intensity factor criterion,
one obtains the following non-dimensional relation
K1

K intrinsic

¼ 1

1� gF ð/Þ ð38Þ
between the apparent fracture toughness and poling orientations. The relation is plotted in Fig. 4, where the
upper curve refers to the result for cylindrical inclusion, and the lower curve refers to the result for spherical
inclusion. Anisotropy of the apparent fracture toughness of ferroelectric induced by poling is verified quan-
titatively by Fig. 4.

4.3. Multiple domain orientations

After the acquisition of the mono-domain toughening solution, we shift our attention to ferroelectrics
consisting of domains in different orientations. Barium titanate is chosen as a representative ferroelectric
material in the subsequent discussion whose parameters will be described as follows. Orientation distribu-
tion function (ODF), f (/), is introduced to describe domain orientations for ferroelectrics and it satisfies
the normalized relation

R p=2

0 f ð/Þd/ ¼ 1 in a plane texture. For un-poled ceramics, a completely random
distribution exists and thus f(/) = 2/p. Hall et al. (2005) derived a poling-induced texture function in
(100) plane, i.e. the fraction of domain having an orientation angle / with respect to the whole domain
of three different directions. Angle / is measured between the domain orientation and the direction of
the poling electric field, [100] direction, in the (100) plane. Hall et al. (2005) performed an in-plane
XRD experiment to verify their theoretical analysis and the comparison indicated that the analysis agrees
well with the measurement. They also developed a micromechanics model for the general three-dimensional
case. For pre-poled barium titanate ceramics, Kolleck et al. (2000) measured a saturated poling strain of
0.15% experimentally. Combining this saturation poling strain, spontaneous strain in Appendix A and
the in-plane version of the poling-induced texture model proposed by Hall et al., one may write
W ð/Þ ¼ 1

3
þ 0.15

3

2
cos2/� 1

2

� �
. ð39Þ



Fig. 4. Normalized remote stress intensity factors versus poling angle for spherical inclusion and cylindrical inclusion.
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The orientation distribution function f(/) appears to be
Table
Switch
inclusi

V 0
90 (%

rth (M

K1 ðM
// Po
Un-
? P
f ð/Þ ¼ W ð/Þ=
Z p

2

0

W ð/Þd/. ð40Þ
The mono-domain solution and orientation distribution function can work together to give the apparent
toughness as
K1 ¼
Z p

2

0

K1ð/Þf ð/Þd/. ð41Þ
Reuss type approximation model is used in the estimation of (41) in ferroelectrics as described by Yang and
Zhu (1998).

Some material parameters of barium titanate are listed below: m = 0.35, E = 90 GPa, V max
90 ¼ 0.22, and

intrinsic fracture toughness K intrinsic ¼ 0.74 MPa
ffiffiffiffi
m
p

(Kolleck et al., 2000). By solving (A.1) numerically,
one obtains a threshold stress, rth, and uniform volume fraction, V 0

90, for spherical and cylindrical inclu-
sions, as shown in Table 1. This Table also lists theoretical predictions for the asymptotes of R-curve under
three cases: (1) ferroelectric samples poled parallel to the crack; (2) un-poled ferroelectrics; and (3) those
poled perpendicular to the crack. The orientation distribution function for the first and the third case as-
sumes the function form described by Eq. (40). Experimental plateau of R-curve for un-poled compact ten-
sion specimens of barium titanate is 1.12� 0.06 MPa

ffiffiffiffi
m
p

(Kolleck et al., 2000). The experimental value lies
between the predictions for spherical and cylindrical inclusions in Table 1. The prediction by spherical
inclusion coincides better than that by cylindrical inclusion and thus the former seems to be favored.
1
-controlling parameters and predictions of apparent fracture toughness of different poling states by the spherical and cylindrical
ons

Spherical Cylindrical

) 1.8 3
Pa) 10 9.25

Pa
ffiffiffiffi
m
p
Þ

led 1.10 1.59
poled 1.05 1.46
oled 1.00 1.33



Table 2
Theoretical predictions and experimental measurements of the maximum half-height of the intensive switching zone by spherical and
cylindrical inclusions for ferroelectrics with three different poling states

Spherical Cylindrical

// Poled
Prediction 23 34

Un-poled
Prediction 16 29
Experiment 25

? Poled
Prediction 11 23
Experiment 20

The unit of all the quantities of this table is lm.
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One may attribute the underestimate of spherical inclusions to the ignorance of out-of-plane non-uniform
domain switching. The toughness calculation in this aspect by Yang et al. (2001a) clearly indicated addi-
tional toughening. The mismatch of the modulus between the matrix and the transitional switching zone
may also contribute to the toughening.

From Fig. 4 and Table 1, one observes that the apparent fracture toughness for cylindrical inclusion
shows much more poling-induced anisotropy than that for spherical inclusion. Since spherical inclusion
model exerts more constraint than the cylindrical case, it is concluded that constraint determines the degree
of anisotropy. The more the constraint is, the less the anisotropy will be. We then predict that the poling-
induced anisotropy of apparent fracture toughness attains the utmost degree in ferroelectric single crystals.

Attention is finally focused on the size of domain switching zone under different poling conditions.
Nomarski interference effect was utilized to visualize the process zone in situ during ferro-elastic domain
switching around a crack tip (Förderreuther et al., 2002). Contour lines were recorded for the percentages
of the switching events. The region where the switching percentage exceeded 50% was regarded as the zone
where intensive switching occurred. They reported that the heights of such switching zones were 25 and
20 lm respectively for the un-poled and the perpendicularly poled samples (Förderreuther et al., 2002).
From (B.3), it is seen that the maximum half-height depends on volume fraction and orientation angle. Be-
fore proceeding to further discussion, one needs to define two quantities possessed by the intensive zone.
We assume the volume fraction within this zone exceeds half of the saturated value in the present non-uni-
form switching model. The maximum half-height of this zone is orientation dependent so one needs to de-
fine a critical angle to determine the expected size. The critical angle is settled such that the probability of
the orientation interval ranging from zero to that angle equals 0.5 according to the ODF of Eq. (40). For
the given volume fraction in the first assumption, the maximum half-height of any orientation in this inter-
val is no less than that of the angle. Following these assumptions, our theoretical predictions for the max-
imum half-heights of the intensive switching zone for the paralleled poled, un-poled and perpendicularly
poled cases are shown in Table 2. For the un-poled and perpendicularly poled cases, it is seen that exper-
iment measurements fall into the interval defined by the predictions by the spherical inclusion and by the
cylindrical inclusion. Again, the neglect of out-of-plane switching for the spherical inclusion model leads to
an underestimate of the switching zone size.
5. Conclusions

This work introduces an evolution law of volume fraction for the switched domain and develops a new
switching model for the non-uniform distribution of switching strain within the switching zone. Mono-
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domain solution of toughening from non-uniform ferro-elastic domain switching is obtained for steady-
state growing crack and is used to construct toughening for ferroelectrics with different poling states.
Two sets of solutions for the toughening and the switching zone size are acquired for the spherical and
the cylindrical inclusions. The interval defined by these solutions gives a good prediction of the correspond-
ing experiment result for the toughening and the switching zone size.
Acknowledgements

This work was sponsored by the National Science Foundation of China under grant 10121202, as well as
by the National 973 Project ‘‘Mechanics Modeling and Numerical Simulation of Meso-scale Properties of
Materials’’ (grant 2004CB619304), and the ‘‘Sino-German Center for Research Promotion’’ under a project
of ‘‘Crack Growth in Ferroelectrics Driven by Cyclic Electric Loading’’.
Appendix A. System energy of a switched ferroelectric grain

For a spherical grain with banded domain pattern constrained in an infinite matrix under remote elec-
tromechanical loading, the change in system energy due to banded domain switching is (Yang et al., 2001b)
DU ¼ Eð7� 5mÞ
15ð1� m2Þ V 90

c� a
a

� �2

þ 4

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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h i
. ðA:1Þ
Various parameters in (A.1) are explained below and are assigned definite values for the case of barium
titanate. The barred quantities denote the remote loadings, such as Ei denote the applied electric field,
and �rij the applied stress field (i, j = 1,2,3). The spontaneous strain (c � a)/a = 0.01, the spontaneous polar-
ization intensity Ps = 0.26 C/m2, the dielectric constant e = 1900e0 = 1.68 · 10�8 F/m (Jaffe et al., 1971),
the coherent domain wall energy Ccoh = 0.002 J/m2 (Lines and Glass, 1979), the grain size D = 15 lm
(Kolleck et al., 2000), and the function f ðV 90Þ ¼

P1
k¼1sin2ðV 90kpÞ=k3 (Yang et al., 2001b).
Appendix B. Angles and height in a switching zone

The conditions of
ffiffi
r
p

P 0 determines the angular ranges of the switching zones in the upper half (labeled
by a superscript ‘‘+’’) and the lower half (labeled by a superscript ‘‘�’’) as shown in (B.1), (B.2) and (B.4).
The initial and the final angles marking those ranges are labeled by subscripts ‘‘i’’ and ‘‘f’’ respectively (Zhu,
1999; Yang, 2002).
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The maximum half-heights h+ and h� in the upper half and the lower half planes can be determined by
the conditions of dðr sin hÞ=dh ¼ 0 as
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where the polar angles correspond to the maximum half-height of the switching boundary hþmax and h�max are
hþmax ¼
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